Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 158, 2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35013282

RESUMO

The subpolar Southern Ocean is a critical region where CO2 outgassing influences the global mean air-sea CO2 flux (FCO2). However, the processes controlling the outgassing remain elusive. We show, using a multi-glider dataset combining FCO2 and ocean turbulence, that the air-sea gradient of CO2 (∆pCO2) is modulated by synoptic storm-driven ocean variability (20 µatm, 1-10 days) through two processes. Ekman transport explains 60% of the variability, and entrainment drives strong episodic CO2 outgassing events of 2-4 mol m-2 yr-1. Extrapolation across the subpolar Southern Ocean using a process model shows how ocean fronts spatially modulate synoptic variability in ∆pCO2 (6 µatm2 average) and how spatial variations in stratification influence synoptic entrainment of deeper carbon into the mixed layer (3.5 mol m-2 yr-1 average). These results not only constrain aliased-driven uncertainties in FCO2 but also the effects of synoptic variability on slower seasonal or longer ocean physics-carbon dynamics.

2.
Geophys Res Lett ; 48(6): e2020GL092263, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34230713

RESUMO

The decline in global emissions of carbon dioxide due to the COVID-19 pandemic provides a unique opportunity to investigate the sensitivity of the global carbon cycle and climate system to emissions reductions. Recent efforts to study the response to these emissions declines has not addressed their impact on the ocean, yet ocean carbon absorption is particularly susceptible to changing atmospheric carbon concentrations. Here, we use ensembles of simulations conducted with an Earth system model to explore the potential detection of COVID-related emissions reductions in the partial pressure difference in carbon dioxide between the surface ocean and overlying atmosphere (ΔpCO2), a quantity that is regularly measured. We find a unique fingerprint in global-scale ΔpCO2 that is attributable to COVID, though the fingerprint is difficult to detect in individual model realizations unless we force the model with a scenario that has four times the observed emissions reduction.

3.
Nat Commun ; 11(1): 2691, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32483136

RESUMO

Syntheses of carbonate chemistry spatial patterns are important for predicting ocean acidification impacts, but are lacking in coastal oceans. Here, we show that along the North American Atlantic and Gulf coasts the meridional distributions of dissolved inorganic carbon (DIC) and carbonate mineral saturation state (Ω) are controlled by partial equilibrium with the atmosphere resulting in relatively low DIC and high Ω in warm southern waters and the opposite in cold northern waters. However, pH and the partial pressure of CO2 (pCO2) do not exhibit a simple spatial pattern and are controlled by local physical and net biological processes which impede equilibrium with the atmosphere. Along the Pacific coast, upwelling brings subsurface waters with low Ω and pH to the surface where net biological production works to raise their values. Different temperature sensitivities of carbonate properties and different timescales of influencing processes lead to contrasting property distributions within and among margins.

4.
Sci Rep ; 9(1): 7592, 2019 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-31110210

RESUMO

To improve estimates of the long-term response of the marine carbon system to climate change a better understanding of the seasonal and interannual variability is needed. We use high-frequency multi-year data at three locations identified as climate change hotspots: two sites located close to South Pacific boundary currents and one in the Subantarctic Zone (SAZ). We investigate and identify the main drivers involved in the seasonal an interannual (2012-2016) variability of the carbon system. The seasonal variability at boundary current sites is temporally different and highly controlled by sea surface temperature. Advection processes also play a significant role on the monthly changes of the carbon system at the western boundary current site. The interannual variability at these sites most likely responds to long-term variability in oceanic circulation ultimately related to climatic indices such as the El Niño Southern Oscillation, the Pacific Decadal Oscillation and the Southern Annular Mode (SAM). In the SAZ, advection and entrainment processes drive most of the seasonality, augmented by the action of biological processes in spring. Given the relevance of advection and entrainment processes at SAZ, the interannual variability is most probably modulated by changes in the regional winds linked to the variability of the SAM.

5.
Sci Total Environ ; 409(19): 3866-78, 2011 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-21733565

RESUMO

Excess nutrients and agrochemicals from non-point sources contribute to water quality impairment in the Chesapeake Bay watershed and their loading rates are related to land use, agricultural practices, hydrology, and pollutant fate and transport processes. In this study, monthly baseflow stream samples from 15 agricultural subwatersheds of the Choptank River in Maryland USA (2005 to 2007) were characterized for nutrients, herbicides, and herbicide transformation products. High-resolution digital maps of land use and forested wetlands were derived from remote sensing imagery. Examination of landscape metrics and water quality data, partitioned according to hydrogeomorphic class, provided insight into the fate, delivery, and transport mechanisms associated with agricultural pollutants. Mean Nitrate-N concentrations (4.9 mg/L) were correlated positively with percent agriculture (R(2)=0.56) and negatively with percent forest (R(2)=0.60). Concentrations were greater (p=0.0001) in the well-drained upland (WDU) hydrogeomorphic region than in poorly drained upland (PDU), reflecting increased denitrification and reduced agricultural land use intensity in the PDU landscape due to the prevalence of hydric soils. Atrazine and metolachlor concentrations (mean 0.29 µg/L and 0.19 µg/L) were also greater (p=0.0001) in WDU subwatersheds than in PDU subwatersheds. Springtime herbicide concentrations exhibited a strong, positive correlation (R(2)=0.90) with percent forest in the WDU subwatersheds but not in the PDU subwatersheds. In addition, forested riparian stream buffers in the WDU were more prevalent than in the PDU where forested patches are typically not located near streams, suggesting an alternative delivery mechanism whereby volatilized herbicides are captured by the riparian forest canopy and subsequently washed off during rainfall. Orthophosphate, CIAT (6-chloro-N-(1-methylethyl)-1,3,5-triazine-2,4-diamine), CEAT (6-chloro-N-ethyl-1,3,5-triazine-2,4-diamine), and MESA (2-[(2-ethyl-6-methylphenyl) (2-methoxy-1-methylethyl)amino]-2-oxoethanesulfonic acid) were also analyzed. These findings will assist efforts in targeting implementation of conservation practices to the most environmentally-critical areas within watersheds to achieve water quality improvements in a cost-effective manner.


Assuntos
Herbicidas/análise , Rios/química , Poluentes Químicos da Água/análise , Acetamidas/análise , Atrazina/análise , Monitoramento Ambiental , Herbicidas/química , Maryland , Nitratos/análise , Resíduos de Praguicidas/análise , Poluentes Químicos da Água/química , Qualidade da Água , Abastecimento de Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...